onlineodev.com`u daha etkin ve verimli kullabilmeniz için, yandex.com.tr, bing.com, yahoo.com gibi arama motorlarını kullanmanızı tavsiye etmektedir.
91 kez görüntülendi
Matematik kategorisinde

1 cevap

0 beğenilme 0 beğenilmeme

ALIŞTIRMALAR

1. Aşağıda verilen ifadeleri mutlak değer dışına çıkarınız.

a) x ∈ R ve x > 0 ise |5x + 7|

b) x ∈ R ve x < 0 ise |3a - |- a||

c) a, b ∈ R ve 0 < a < b ise |a - b| - |b - a|

ç) x, y ∈ R ve x < y < 0 ise |x + y| + |- x| - |y|

a) x ∈ R ve x > 0 ise |5x + 7| dışarı 5x+7 olarak çıkar çünkü x zaten pozitif bir sayıdır dolayısıyla 5x+7 de pozitiftir dışarı aynı şekilde çıkar.

b) x ∈ R ve x < 0 ise |3x - |- x||

I-xI dışarıya -x olarak çıkar çünkü x negatif bir sayıdır önüne - işareti gelince pozitif olur. I3x-(-x) I=I4xI oldu, I4xI dışarıya pozitif olması için -4x olarak çıkar

c) a, b ∈ R ve 0 < a < b ise |a - b| - |b - a|

(a-b) negatif bir sayıdır çünkü b a dan büyüktür.Bu yüzden Ia-bI dışarıya önüne - alarak b-a olarak çıkar.

(b-a) pozitif bir sayıdır çünkü b a dan büyüktür.Bu yüzden Ib-aI dışarıya pozitif olduğu için aynı şekilde çıkar b-a olur.

(b-a)-(b-a)=0 olur.

d) x, y ∈ R ve x < y < 0 ise |x + y| + |- x| - |y|

Ix+yI ifadesi x ve y negatif olduğu için negatif bir sayıdır ve mutlak değer dışına önüne - alarak çıkar -x-y olur

x negatif bir sayı olduğu için -x pozitif bir sayıdır bu yüzden I-xI ifadesi dışarıya aynı şekilde -x olarak çıkar

y negatif bir sayıdır bu yüzden IyI dışarıya önüne - alarak çıkar -y olur

-x-y-x-(-y)=-2x oldu

2. Aşağıda verilen mutlak değerli denklemlerin çözüm kümelerini bulunuz.

a) x ∈ R , |- 2x + 7| = 11

b) x ∈ R , |- 7x + 17| = -2

c) a ∈ R , |5a - 20| = 0

ç) b ∈ R , |- 3b| + |2b| - 20 = 0

a) Mutlak değerin içini önce 11'e daha sonra da -11'e eşitleyerek işlem yapacağız. Mutlak değer bütün sayıları pozitif yaptığından dolayı içindeki sayıların negatif olma ihtimalini de düşünmüş oluyoruz böylece.

-2x + 7 = 11

-2x = 4

x = -2

-2x + 7 = -11

-2x = -18

x =9

Bu işlemlerden anlarız ki x'in -2 ve 9 olmak üzere iki değeri olabilir.

b) Mutlak değerin eşit olduğu sayı hiçbir zaman negatif olamayacağı için x yerine hangi sayıyı yazarsak yazalım bu ifade sağlanamaz. Yani x değerini sağlayan elemanlar kümesi aslında bir boş kümedir.

c) Mutlak değerin içindeki sayı 0 ise eşit olduğu sayı da 0 olur. O halde;

5a - 20 = 0

5a = 20

a = 4 olmalıdır.

ç) Bu soruyu çözerken iki ihtimal için işlem yapmalıyız. b sayısı negatif veya pozitif olabilir. Her ikisini de değerlendirmeliyiz.

* b < 0

-3b -2b = 20

-5b = 20

b = -4

* b > 0

3b + 2b = 20

5b = 20

b = 4

Yaani b sayısı -4 veya +4 olabilir.

3. Aşağıda verilen mutlak değerli eşitsizliklerin çözüm kümelerini bulunuz.

a) x ∈ R , |5x - 5|< 10

b) a ∈ R , |7a - 13| < 0

c) a ∈ R , |6a - 12| < -7

ç) a ∈ R , |2a - 2| - 8 ≤ 0

d) x ∈ R , |x + 6| > 0

e) x ∈ R , 6 ≤ |x - 8| ≤ 10

a) |5x - 5| = 10

Mutlak değerin içinin negatif veya pozitif olmasına göre işlemi iki kere yapacağız.

* -5x + 5 =10

-5x = 15

x = -3

* 5x - 5 =10

5x = 15

x = 3

Bu sayılar mutlak değerin içini 0 yapan sayılardır. Yerine yazdığımızda 10'dan küçük gelmesi gerektiği için x çözüm kümesi (-3 , +3) olarak bulunur.

b) Bu ifade mutlak değerin sonucunun 0'dan küçük olmasını istiyor bizden. Ancak mutlak değer sonucu her zaman pozitif olduğu için bu ifade yanlıştır. x yerine yazılabilecek bir sayı yoktur. x kökleri boş kümeyi ifade eder diyebiliriz.

c) | x + 6| > 0

Mutlak değerin sonucu her zaman pozitiftir. Mutlak değer içini 0 yapan değer hariç tüm sayılar x değeri olabilir. Yani x "-6" hariç tüm sayılardır.

ç) Bu seçeneği değerlendirirken mutlak değer içindeki sayının negatif olması ihtimalini de düşüneceğiz. Şöyle düşünebiliriz; (x-8) sayısı mutlak değer içinde olduğu için dışarıya daima pozitif çıkacaktır. x yerine yazdığımız değer sonucu bu sayı 6 da olabilir -6 da olabilir ancak sonuç her zaman 6 olmalıdır.

* 6 ≤ x-8 ≤ 10

14 ≤ x ≤ 18

Bu işlemlerden x sayısı 14, 15, 16, 17 ve 18 çıkar.

* -6 ≥ x-8 ≥ -10

2 ≥ x ≥ -2

Bu işlemlerden de x sayısı 2, 1 , 0, -1 ve -2 olarak bulunur.

x yerine 10 tane sayı yazılabilir ve bu sayılar {-2,-1,0,1,2,14,15,16,17,18}'dir.

4. x ∈ R olmak üzere ||x - 4| - 6| = 2 denkleminin çözüm kümesini bulunuz

5. x, y ∈ R olmak üzere |x - 3| < 5 ve 3x - y = 2 ise y nin alabileceği kaç farklı tam sayı değeri olduğunu bulunuz.

6. Sayı doğrusu üzerinde 7 ye olan uzaklığı 5 birimden fazla olmayan kaç tane tam sayı değerinin olduğunu bulunuz.

Bir sayı doğrusu üzerine tam sayıları yazdığımızı düşünelim. 7 noktasına olan uzaklığı 5 birimden fazla olmayan tam sayıları yani en fazla 5 birim olan sayıları tek tek işaretleyelim.

7-5 = 2

Sayı doğrusunda 7'ye 5 birim uzaklığındaki en küçük sayı 2'dir.

7+5 = 12

Sayı doğrusunda 7'ye 5 birim uzaklığındaki en büyük sayı 12'dir.

Soruda bizden istenen sayılar 2 ile 12 arasında kalan sayılardır. 2 ve 12 de bu sayılara dahildir.

2, 3, 4, 5, 6, 8, 9, 10, 11, 12

Toplam 10 tane sayı vardır.

7. 2/|a - 2| > 1/3 eşitsizliğini sağlayan kaç farklı a tam sayısının olduğunu bulunuz (a nın 2 olamayacağına dikkat ediniz.).

Öncelikle her iki sayının da pay kısmını eşitleriz. Böylece paydalar arasında kıyaslama yapabiliriz.

Paydaya 2 değerini de yazamayacağımız için özellikle dikkat etmeliyiz. İşlemleri ekte bulabilirsin.

2 / (1a - 21) > 1 / 3

2 / (1a - 21) > 2 / 6

6 > 1a - 21

6 > a - 2 > -21

a = {7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3}

Soru da bilgiden doğar, cevap da 

Hz. Mevlana

...